## $\pi$ -ELECTRON STRUCTURES AND REACTIVITIES OF 2,3-AND 2,5-DIHYDROXYPYRIDINES

V. T. Grachev, B. E. Zaitsev, K. M. Dyumaev, L. D. Smirnov, and M. R. Avezov

The  $\pi$ -electron structures and reactivities of 2,3- and 2,5-dihydroxypyridines in neutral, acidic, and alkaline media were investigated by the Hückel MO method. Satisfactory correlations of the indexes of the  $\pi$ -electron structures with the reactivities and other properties of these molecules were obtained.

It has been shown [1] by UV and IR spectroscopic methods that 2,3- and 2,5-dihydroxypyridines exist in forms Ia, IIa, Ib, IIb, Ic, and IIc, respectively, in neutral, acidic, and alkaline media:



The electronic structures and reactivities of I and II have not been studied by quantum-chemical methods. The aim of the present study was to obtain indexes of the  $\pi$ -electron structures and to correlate them with the reactivities and other properties of I and II.

The calculations were performed by the Hückel MO LCAO method [2] with the parameters presented in Table 1.

It follows from the total  $\pi$ -electron energies ( $E_{\pi}$ ), delocalization energies ( $ED_{\pi}$ ), and delocalization energies per  $\pi$  electron ( $ED_{\pi}/n$ ) presented in Table 2 that forms Ia and IIa are the most stable.

It is usually assumed [2, 3] that the long-wave  $\pi \to \pi^*$  band in the electronic spectra of molecules is associated with the transition ( $\Delta E$ ) of a  $\pi$  electron from an upper occupied molecular orbital (E<sub>UOMO</sub>) to a lower vacant MO (E<sub>LVMO</sub>). The  $\lambda_{\max}$  values calculated from the  $\Delta E$  values for the long-wave  $\pi \to \pi^*$ band from the formula [3]

| Compound and | С            | oulombic       |                | Resonance        |                  |                  |                  |  |  |
|--------------|--------------|----------------|----------------|------------------|------------------|------------------|------------------|--|--|
| its form     | hi           | h <sub>7</sub> | h <sub>s</sub> | k <sub>C-C</sub> | k <sub>C-N</sub> | k <sub>3,8</sub> | k <sub>2,7</sub> |  |  |
| Ia<br>1b     | 0,27         | 1,6            | 2,0            |                  | 1                | 0,64             | 2,50<br>0.60     |  |  |
| IC           | 0,34         | 1,2            | 1,2            | 1                | 1                | 0,50             | 0,50             |  |  |
| IIa<br>IIb   | 0,27<br>0,34 | $^{1,6}_{2,0}$ | 2,0<br>2,0     | 1                |                  | 0,64<br>0,80     | 2,50<br>0,80     |  |  |
| Пс           | 0,34         | 1,2            | 1,2            | 1                | 1                | 0,72             | 0,72             |  |  |

TABLE 1. Parameters for the Calculation of 2,3- and 2,5-Dihydroxypyridines by the Hückel MO Method

Scientific-Research Institute of Organic Intermediates and Dyes, Moscow. Institute of Chemical Physics, Academy of Sciences of the USSR, Moscow. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 1, pp. 56-59, January, 1973. Original article submitted December 14, 1971.

© 1975 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

| Com-<br>pound<br>and its<br>form | <sup>E</sup> UOMO<br>β <sub>0</sub> | ELVMO-<br>Bo | -ΔΕ×βο | Calc.<br>λ <sub>max</sub> ,<br>nm | Exptl.<br><sup>\lambda</sup> max'<br>nm | Calc.<br>J, eV | Ε <sub>π</sub> ×<br>β <sub>0</sub> | ED <sub>π</sub> ×β₀ | $\frac{\text{ED}_{\pi}}{n} \times \beta_0$ |
|----------------------------------|-------------------------------------|--------------|--------|-----------------------------------|-----------------------------------------|----------------|------------------------------------|---------------------|--------------------------------------------|
| Ia                               | 0,265                               | -0,973       | 1,238  | 308                               | 300                                     | 8,75[1]        | 17,730                             | 3,950               | 0,395                                      |
| Ib                               | 0,836                               | -0,913       | 1,749  | 290                               | 290                                     | 8,84           | 16,588                             | 2,188               | 0,219                                      |
| Ic                               | 0,719                               | -0,912       | 1,631  | 310                               | 310                                     | 8,56           | 13,370                             | 2,170               | 0,217                                      |
| IIa                              | 0,265                               | -0,937       | 1,202  | 320                               | 330                                     | 8,800[1]       | 17,726                             | 3,946               | 0,395                                      |
| IIb                              | 0,715                               | -0,909       | 1,624  | 313                               | 313                                     | 8,55           | 16,762                             | 2,362               | 0,236                                      |
| IIc                              | 0,552                               | -0,912       | 1,462  | 347                               | 347                                     | 8,15           | 13,188                             | 1,988               | 0,199                                      |

TABLE 2. Energy Characteristics of 2,3- and 2,5-Dihydroxy-pyridines

TABLE 3. Electronic Characteristics and Bond Lengths for Three Forms of 2,3- and 2,5-Dihydroxypyridines

| Com-<br>pound<br>and its<br>form | Atom<br>No.                          | <i>q</i> <sub>r</sub>                                                | Bond<br>r—s                                            | p <sub>rs</sub>                                                      | Calcu-<br>lated<br>r <sub>rs</sub> , Å                               | Com-<br>pound<br>and its<br>form | Atom<br>No.                          | q <sub>r</sub>                                                                | Bond<br>r—s                                                                                           | p <sub>rs</sub>                                                      | Calcu-<br>lated<br><sup>r</sup> rs, A                                |
|----------------------------------|--------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------|--------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|
| Ia                               | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | 1,372<br>0,821<br>1,167<br>1,014<br>1,192<br>0,964<br>1,501<br>1,969 | $1-2 \\ 1-6 \\ 2-3 \\ 3-4 \\ 5-6 \\ 2-7 \\ 3-8 $       | 0,430<br>0,663<br>0,404<br>0,743<br>0,594<br>0,672<br>0,760<br>0,158 | 1,372<br>1,330<br>1,442<br>1,382<br>1,408<br>1,395<br>1,270<br>1,369 | IIa                              | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | 1,363<br>0,821<br>1,218<br>0,993<br>1,155<br>0,971<br>1,505<br>1,973          | $1-2 \\ 1-6 \\ 2-3 \\ 3-4 \\ 4-5 \\ 5-6 \\ 2-7 \\ 3-8$                                                | 0,427<br>0,667<br>0,417<br>0,731<br>0,608<br>0,659<br>0,759<br>0,150 | 1,372<br>1,329<br>1,440<br>1,385<br>1,402<br>1,397<br>1,270<br>1,370 |
| ΙЪ                               | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | 1,157<br>0,943<br>0,998<br>0,989<br>1,018<br>0,963<br>1,967<br>1,964 | $1-2 \\ 1-6 \\ 2-3 \\ 3-4 \\ 4-5 \\ 5-6 \\ 2-7 \\ 3-8$ | 0,651<br>0,657<br>0,641<br>0,661<br>0,663<br>0,669<br>0,180<br>0,194 | 1,332<br>1,331<br>1,400<br>1,397<br>1,396<br>1,395<br>1,366<br>1,363 | IIb                              | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | 1,173<br>0,932<br>1,039<br>1,004<br>0,985<br>0,985<br>1,938<br>1,938<br>1,943 | $ \begin{array}{r} 1 - 2 \\ 1 - 6 \\ 2 - 3 \\ 3 - 4 \\ 4 - 5 \\ 5 - 6 \\ 2 - 7 \\ 3 - 8 \end{array} $ | 0,639<br>0,658<br>0,641<br>0,676<br>0,641<br>0,651<br>0,256<br>0,238 | 1,334<br>1,331<br>1,400<br>1,393<br>1,400<br>1,398<br>1,353<br>1,356 |
| Ic                               | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | 1,158<br>0,950<br>1,004<br>0,990<br>1,020<br>0,964<br>1,955<br>1,960 | 1-2 1-6 2-3 3-4 4-5 5-6 2-7 3-8                        | 0,649<br>0,657<br>0,637<br>0,660<br>0,663<br>0,668<br>0,214<br>0,198 | 1,333<br>1,331<br>1,400<br>1,397<br>1,396<br>1,395<br>1,360<br>1,362 | IIc                              | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | 1,180<br>0,945<br>1,044<br>1,009<br>0,996<br>0,990<br>1,914<br>1,922          | 1-2 1-6 2-3 3-4 4-5 5-6 2-7 3-8                                                                       | 0,630<br>0,659<br>0,632<br>0,679<br>0,633<br>0,644<br>0,299<br>0,277 | 1,336<br>1,331<br>1,402<br>1,394<br>1,402<br>1,400<br>1,345<br>1,349 |

$$\Delta E = E_{\text{LVMO}} - E_{\text{UOMO}} = \frac{28.635 \cdot 10^3}{\lambda \text{ (nm)}} \left(\frac{\text{kcal}}{\text{mole}}\right) = \frac{1241}{\lambda \text{ (nm)}} \left(\frac{\text{ev}}{\text{mole}}\right)$$

for  $\beta_0 = -2.445$  eV for forms Ib, Ic, IIb, and IIc and for an average  $\beta_0 = -3.240$  eV for forms Ia and IIa lead to the experimental  $\lambda_{\text{max}}$  values [1] for this band.

The calculated ionization potentials (Table 2) from the  $E_{\rm UOMO}$  values for forms Ib, Ic, and IIc are close to the ionization potential of phenol (I=-8.50 eV) [4]. However, it is assumed that identification of -I with the UOMO energy is valid only for MO in the SCF method. In [1], we calculated the  $E_{\rm UOMO}$  values for forms Ia and IIa by the MO method within the Pariser-Parr-Pople (PPP) approximation. The I values obtained from these values for Ia and IIa (Table 2) are also close to I for phenol.

It is seen from Table 3 that the values of the effective  $\pi$ -electron charges ( $Q_N^* \approx +0.632$  and  $Q_O^* \approx -0.503$ ) in forms Ia and IIa are in good agreement with the experimental data: the high value of the intensity of the absorption band of the C=O group in  $\alpha$ -pyridones [1, 5] and the dipole moment of  $\alpha$ -pyridone, which is equal to 1.73 D [6]. The high value of the positive charge on the cyclic nitrogen atom of the pyrrole type attests to the participation of the unshared pair of electrons in the overall  $\pi$ -electron system. Moreover, the  $\pi$ -electron density is markedly shifted to the pyridone C=O group. The positive charge on the oxygen atom in the 3 and 5 positions attests to the conjugation of these atoms with the ring. The uneven distribution of the  $\pi$ -electron density ( $q_r$ ) in the heterorings is due to the effect of the nitrogen and oxygen atoms (Table 2).

The bond lengths  $(r_{rs})$  calculated from the bond orders  $(p_{rs})$  from the formulas in [7] are in agreement with the known experimental data for 2-pyridone, pyridine, and phenol [8]. It follows from a compari-

| Com-<br>pound<br>and its<br>form | Atom<br>No.,<br>r | Q <sub>r</sub>                      | f <sub>r</sub> +        | f <sub>r</sub> -        | fr°                     | F <sub>r</sub>          | L <sub>r</sub> +        | L <sub>r</sub> -        | L <sub>r</sub> <sup>0</sup> |
|----------------------------------|-------------------|-------------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-----------------------------|
| Ia                               | 4<br>5<br>6       | $-0,014 \\ -0,192 \\ +0,036$        | 0,004<br>0,260<br>0,040 | 0,225<br>0,003<br>0,280 | 0,114<br>0,131<br>0,160 | 0,398<br>0,469<br>0,400 | 2,594<br>3,087<br>2,488 | 2,502<br>1,858<br>2,426 | 2,548<br>2,472<br>2,457     |
| IЪ                               | 4<br>5<br>6       | $+0,011 \\ -0,018 \\ +0,037$        | 0,010<br>0,174<br>0,206 | 0,313<br>0,052<br>0,124 | 0,161<br>0,113<br>0,165 | 0,411<br>0,403<br>0,409 | 2,556<br>2,586<br>2,546 | 2,462<br>2,470<br>2,454 | 2,509<br>2,528<br>2,500     |
| Ιc                               | 4<br>5<br>6       | $^{+0,010}_{-0,020}$<br>$^{+0,036}$ | 0,108<br>0,114<br>0,142 | 0,315<br>0,052<br>0,124 | 0,166<br>0,083<br>0,133 | 0,412<br>0,404<br>0,410 | 2,530<br>2,584<br>2,520 | 2,468<br>2,454<br>2,450 | 2,504<br>2,519<br>2,485     |
| IIa                              | 3<br>4<br>6       | -0,218 + 0,007 + 0,029              | 0,255<br>0,038<br>0,040 | 0,255<br>0,250<br>0,280 | 0,255<br>0,144<br>0,160 | 0,587<br>0,396<br>0,409 | 2,520<br>1,574<br>1,454 | 1,652<br>1,534<br>1,394 | 2,086<br>1,554<br>1,424     |
| Цр                               | 3<br>4<br>6       | $-0,039 \\ -0,004 \\ +0,015$        | 0,114<br>0,049<br>0,142 | 0,164<br>0,290<br>0,230 | 0,139<br>0,170<br>0,186 | 0,418<br>0,418<br>0,426 | 2,576<br>2,500<br>2,446 | 2,384<br>2,488<br>2,438 | 2,480<br>2,494<br>2,442     |
| llc                              | 3<br>4<br>6       | $-0,044 \\ -0,009 \\ +0,010$        | 0,084<br>0,049<br>0,112 | 0,167<br>0,290<br>0,235 | 0,125<br>0,169<br>0,173 | 0,424<br>0,423<br>0,432 | 2,246<br>2,076<br>1,974 | 2,166<br>2,024<br>1,930 | 2,206<br>2,050<br>1,952     |
|                                  |                   |                                     |                         |                         |                         |                         |                         |                         |                             |

TABLE 4. Reactivity Indexes for Three Forms of 2,3- and 2,5-Dihydroxypyridines

son of the calculated  $r_{rs}$  values for the forms of I and II that hydroxyl groups have a slight effect on the change in the bond length in the heterocycle, while the carbonyl group markedly alters them.

According to the experimental data, aromatic substitution in alkaline media in I is directed initially to the 6 position and then to the 4 position [9], while the 6 position is the most reactive one in II [10]. The electrophilic reactions of I and II, which proceed in acidic media, are directed to the 6 position [11].

It is apparent from Table 4 that the calculated  $\pi$ -electron charges ( $Q_r$ ) for the reactive centers of forms Ib, Ic, IIb, and IIc prove to be unsuitable to explain the electrophilic substitution in acid and alkaline media. However, the calculated localization energies ( $L_r^+$ ) for forms Ib, Ic, IIb, and IIc are in agreement with the experimentally observed sequence of electrophilic substitution in I and II in acid and alkaline media. The values that we obtained for the boundary electron densities ( $f_r^+$ ) are also in agreement with the experimental data on electrophilic substitution. The  $L_r^+$  values for forms Ia and IIa indicate the same sequence of electrophilic substitution as for forms Ib and Ic and IIb and IIc, respectively.

It is known [2] that when one examines the reactivity in the MO method, the  $q_r$  or  $Q_r$  values characterize the occurrence of substitution reactions through the intermediate  $\pi$  complex, in which the  $\pi$ -electron density does not undergo significant changes; however, the localization energies  $(L_r^+)$  characterize the occurrence of substitution reactions through an intermediate  $\sigma$  complex, in which the change in the  $\pi$ electron density is considerable. Since the  $L_r^+$  values are in complete agreement with experiment while the  $Q_r$  values are not in agreement in I and II, there is some basis to assume that substitution in acid and alkaline media proceeds through the formation of an intermediate  $\sigma$  complex.

There is no information in the literature regarding the nucleophilic and radical substitution reactions in I and II. The reactivity indexes for nucleophilic substitution ( $Q_r$ ,  $f_r$ , and  $L_r$ ) and radical substitution ( $f_r^0$ , the free valence index  $F_r$  [2, 3], and  $L_r^0$ ) were calculated for the reaction centers of the heterorings of all forms of I and II and are presented in Table 4.

## LITERATURE CITED

- 1. V. T. Grachev, B. E. Zaitsev, K. M. Dyumaev, L. D. Smirnov, and M. R. Avezov, Khim. Geterotsikl. Soedin., 60 (1073).
- 2. A. Streitwieser, Molecular Orbital Theory [Russian translation], Mir, Moscow (1965).
- 3. K. Higasy, H. Baba, and A. Rembaum, Quantum Organic Chemistry, Wiley (1965).
- 4. Handbook of Chemistry [in Russian], Vol. 1, Leningrad (1971), p. 354.
- 5. B. E. Zaitsev and Yu. N. Sheinker, Izv. Akad. Nauk SSSR, Ser. Khim., 2070 (1962).
- 6. M. N. Krackov, C. M. Sec, and H. G. Mautner, J. Am. Chem. Soc., 87, 892 (1965).
- 7. M. J. S. Dewar and T. Morita, J. Am. Chem. Soc., <u>91</u>, 796 (1969).
- 8. L. E. Sutton, Tables of Interatomic Distances and Configuration in Molecules and Ions, London (1958).
- 9. M. R. Avezov, L. D. Smirnov, V. P. Lezina, B. E. Zaitsev, and K. M. Dyumaev, Izv. Akad. Nauk SSSR, Ser. Khim., 845 (1971).

- 10. L. D. Smirnov, M. R. Avezov, V. P. Lezina, B. E. Zaitsev, and K. M. Dyumaev, Izv. Akad. Nauk SSSR, Ser. Khim., 2338 (1971).
- 11. K. M. Dyumaev, L. D. Smirnov, M. R. Avezov, and B. E. Zaitsev, Nauchnye Trudy Samarkandskogo Univ., 108 (1970).